Notes.

(a) You may freely use any result proved in class unless you have been asked to prove the same. Use your judgement. All other steps must be justified.
(b) We use $\mathbb{N}=$ natural numbers, $\mathbb{Z}=$ integers, $\mathbb{Q}=$ rational numbers, $\mathbb{R}=$ real numbers.

1. [15 points] If a ring R has a nonzero proper ideal, prove that it has a proper ideal which is not a prime ideal.
2. [20 points] Let a, b be nonzero coprime integers. Prove that $\mathbb{Z}[i] /(a+b i)$ is isomorphic to the ring $\mathbb{Z} /\left(a^{2}+b^{2}\right) \mathbb{Z}$.
3. [20 points] Let \mathfrak{m}_{1} and \mathfrak{m}_{2} be distinct maximal ideals in a ring. Prove that for any positive integers s_{1}, s_{2}, we have $\mathfrak{m}_{1}^{s_{1}} \cap \mathfrak{m}_{2}^{s_{2}}=\mathfrak{m}_{1}^{s_{1}} \mathfrak{m}_{2}^{s_{2}}$.
4. [15 points] Let F be a field and R an F-algebra having vector space dimension 2 over F. Prove that either R is a field or R is isomorphic to $F \times F$ or is isomorphic to $F[x] /\left(x^{2}\right)$.
5. [15 points] Let $f: A \rightarrow B$ be a map of \mathbb{C}-algebras. Prove that for any maximal ideal \mathfrak{m} in B, the inverse image $f^{-1} \mathfrak{m}$ is a maximal ideal in A. (Hint: Is $B / \mathfrak{m} \xrightarrow{\sim} \mathbb{C}$?)
6. [15 points] For every integer $n>0$, find the number of distinct ways in which 15^{n} can be written as a sum of two squares.
